

PMI RESEARCH & DEVELOPMENT

Integrating multi-omics and high-content screening data to link biological network perturbations with cellular phenotypes to elucidate pathways of toxicity

Ignacio Gonzalez Suarez, Ph.D.

Senior scientist, Philip Morris International R&D

Doc No: Use DISCO Name

Page: (#)

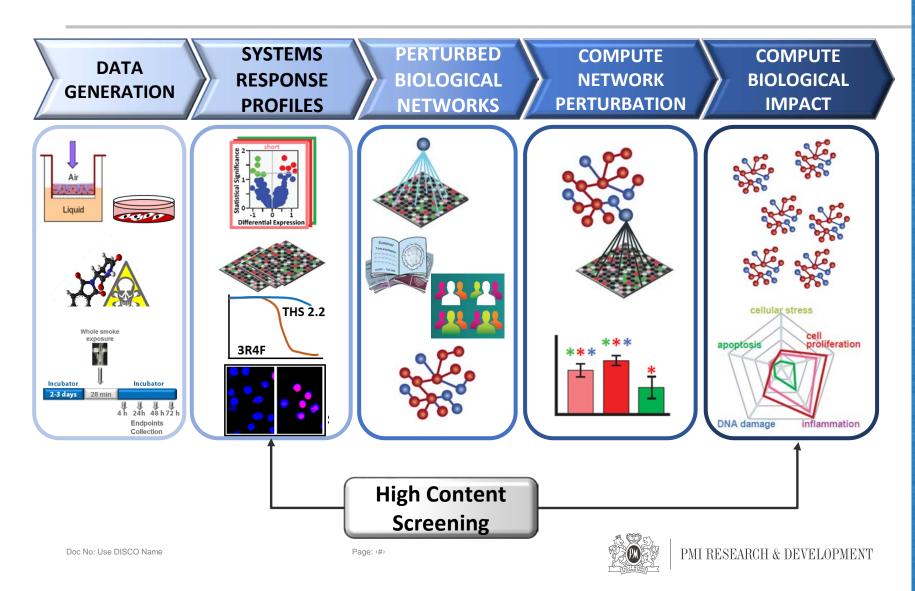
PMI RESEARCH & DEVELOPMENT

Integrating multi-omics and high-content screening data to link biological network perturbations with cellular phenotypes to elucidate pathways of toxicity

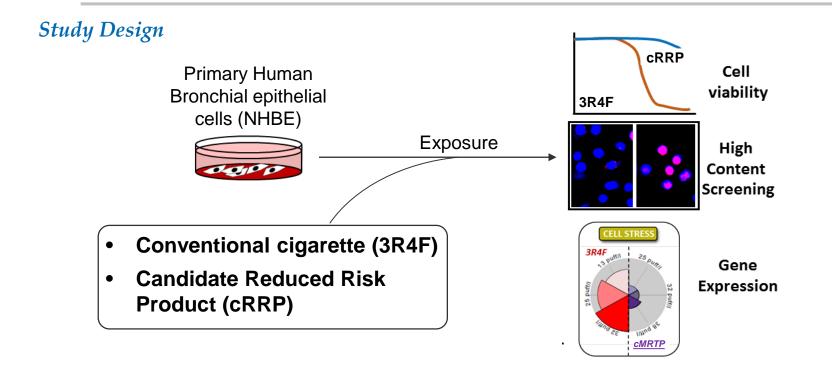
How to apply omics and cellular imaging to toxicological assessment

Ignacio Gonzalez Suarez, Ph.D.

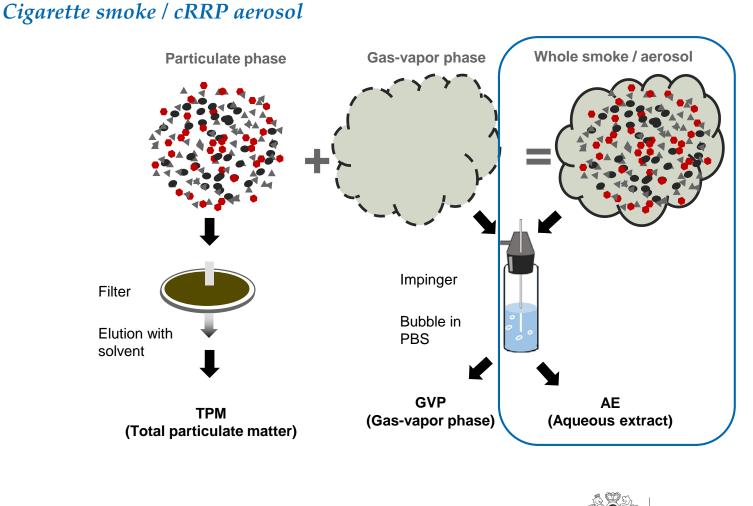
Senior scientist,


Philip Morris International R&D

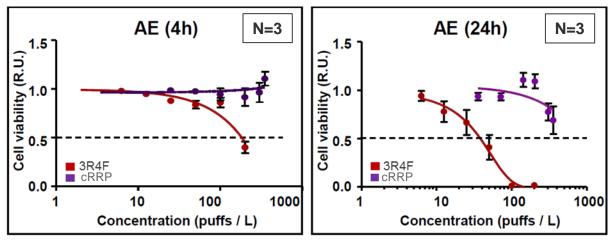
Doc No: Use DISCO Name


Page: (#)

Systems Toxicology Assessment workflow at PMI



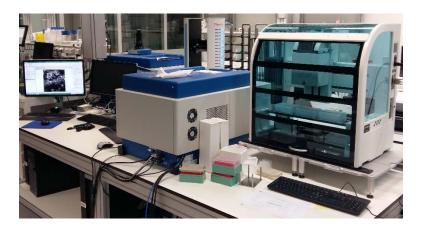
What is the Biological impact of a cRRP compared to 3R4F?



Doc No: Use DISCO Name

Page: (#)

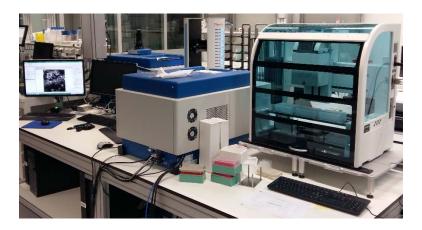
Step I: Cell Viability


Gonzalez-Suarez et al. Chem. Res. Tox. 2015

- ✓ Dose-dependent decrease in cell viability upon exposure to 3R4F AE.
- ✓ Selected appropriate doses for HCS analysis

PMI RESEARCH & DEVELOPMENT

Step II: High-Content Screening



- 7 Different Assays
- 14 Toxicological endpoints
- 6 Doses + vehicle
- 3 replicate wells per dose
- 2 time points (4h & 24h)
- \geq 3 independent experiments

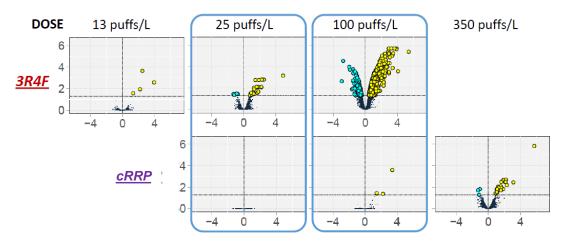
Cell Count • **Proliferation** Cell cycle Phospho-H2AX **DNA Damage** Phospho cJun Cell / Oxidative stress ROS formation **GSH** content • Caspase 3/7 Cytochrome C **Apoptosis / necrosis** Membrane permeability • Nuclear size Mitochondrial mass **Mitochondrial health** Mitochondrial potential NF- $\kappa\beta$ translocation Inflammation Gap-Junction **Cell communication**

Step II: High-Content Screening

- 7 Different Assays
- 14 Toxicological endpoints
- 6 Doses + vehicle
- 3 replicate wells per dose
- 2 time points (4h & 24h)
- \geq 3 independent experiments

	3R	24F	cRRP	
	4h	24h	4h	24h
Cell Count	-	100	-	200*
DNA Damage (p-H2AX)	200*	200*	-	-
Cell Stress (p-cJun)	-	100	-	200*
ROS Formation	-	100*	-	-
GSH Content	50	100	-	200*
Cell cycle	NA	13	NA	140
Apoptosis (Cytochrome C)	-	100	-	280*
Necrosis (membrane permeability)	100	100	350*	-
Mitochondrial Membrane Potential	-	100	-	280
Mitochondrial Mass	50 *	200*	-	-

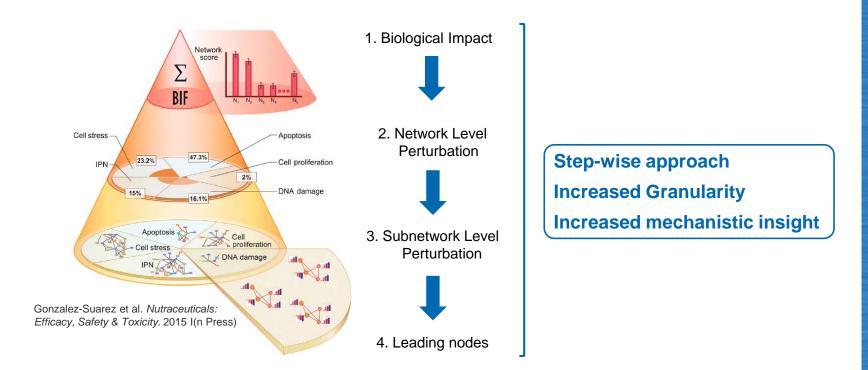
Gonzalez-Suarez et al. Chem. Res. Tox. 2015


- ✓ Dose-dependent responses in multiple endpoints upon exposure to 3R4F.
- ✓ Selected appropriate doses for Transcriptomics

PMI RESEARCH & DEVELOPMENT

Gene expression (DEG)

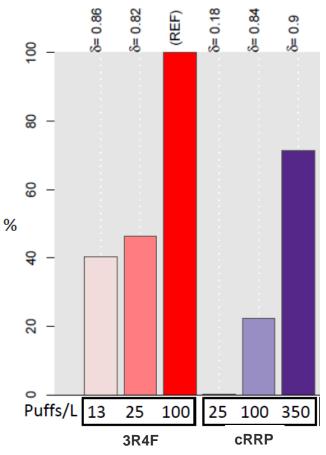
- 2 items: 3R4F & cRRP
- 3 Doses + vehicle
- 1 time points (4h)
- ≥ 3 independent experiments



Gonzalez-Suarez et al. Chem. Res. Tox. 2015

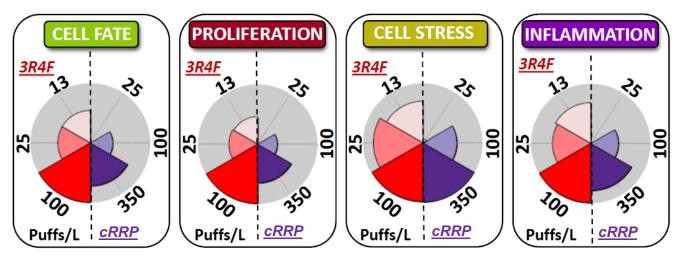
✓ Increased number of DEG in response to 3R4F compared to cRRP.

Gene expression (Network Biology)


PMI RESEARCH & DEVELOPMENT

Gene expression: Biological Impact Factor (BIF)

- Sum of all perturbations across all biological networks
- Vehicle control (0%)
- Reference value (100%)
- Reference: highest level of overall perturbation
- δ value (-1 to 1): compares underlying biology to reference

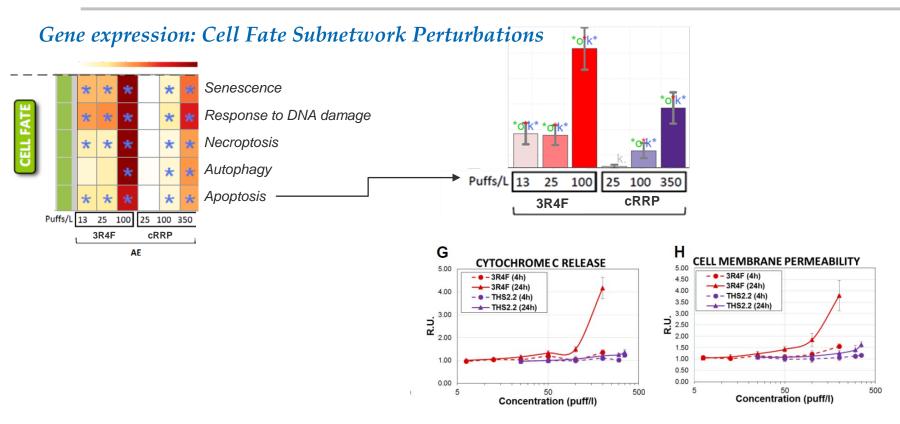

- ✓ At comparable doses, lower biological impact of cRRP
- $\checkmark~\delta$ suggest similar underlying biology between 3R4F and cRRP

Gonzalez-Suarez et al. Chem. Res. Tox. 2015

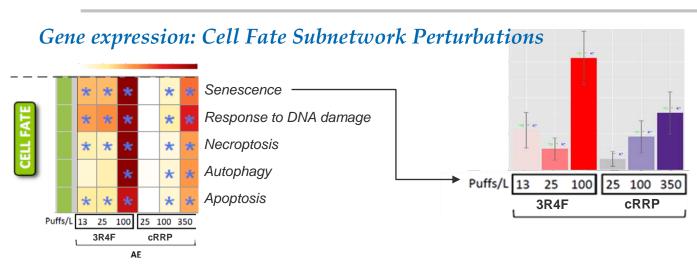
Gene expression: BIF Mechanistic Components

Gonzalez-Suarez et al. Chem. Res. Tox. 2015

- ✓ Dose-dependent responses in 3R4F and cRRP.
 - ✓ At comparable doses, lower biological impact of cMRTP


PMI RESEARCH & DEVELOPMENT

- Surface area proportional to level of network perturbation
- Vehicle control (0%)
- Values normalized to reference


Doc No: Use DISCO Name

Page: (#)

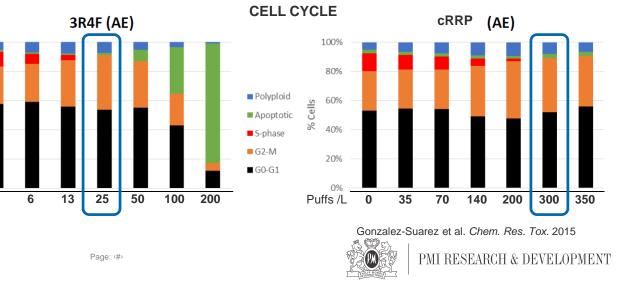
Gonzalez-Suarez et al. Chem. Res. Tox. 2015

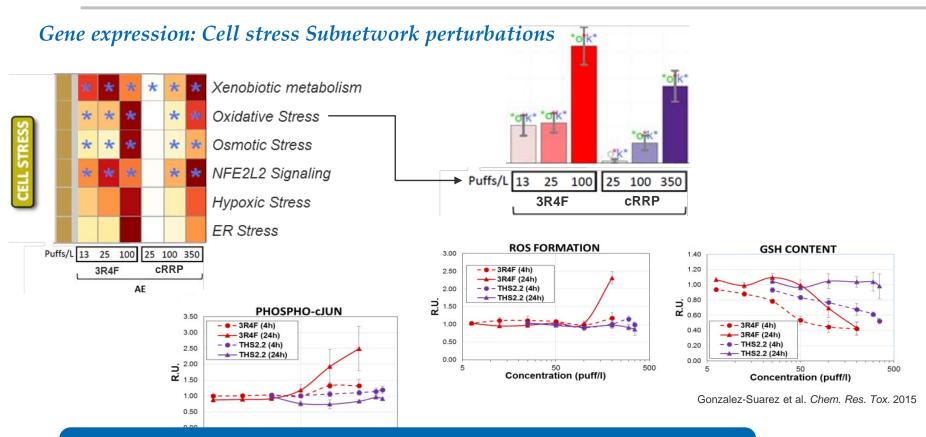
100%

80%

60%

40%


20%

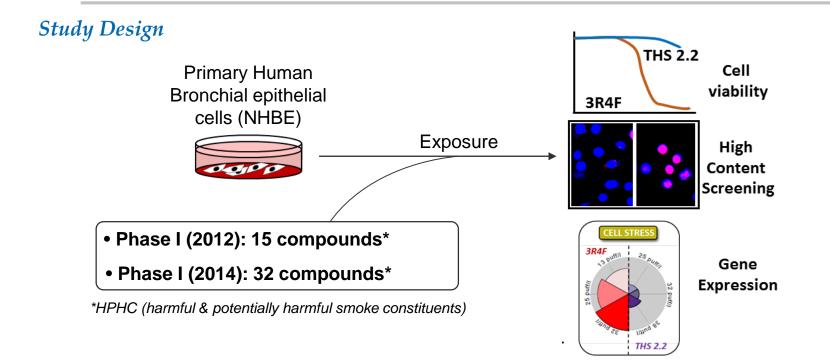

0%

0

Puffs /L

% cells

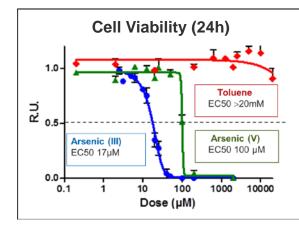
Exposure to cRRP has a lower biological impact on NHBE cells compared to 3R4F


Doc No: Use DISCO Name

Page: (#)

PMI RESEARCH & DEVELOPMENT

Toxicological Assessment of Environmental toxicants


What is the Biological impact of these chemicals in NHBE cells?

Toxicological Assessment of Environmental toxicants

Step I: Cell Viability

- 32 toxicants
- 6 Doses + vehicle
- 24h exposure
- ≥ 3 independent experiments

	НРНС	EC50 Value	R ²	НРНС		EC50 Value	R ²
1	Chromium (VI)	4 μM	0.995	17	o-Anisidine	11970 μM	0.968
2	Arsenic (III)	17 µM	0.968	18	2-nitropropane	> 20 mM	-
3	5-Methylchrysene	28 µM	0.961	19	Acetamide	> 20 mM	-
4	Arsenic (V)	100 µM	0.990	20	Acetone	> 20 mM	-
5	Mercury (II)	110 μM	0.999	21	Benzene	> 20 mM	-
6	Selenium (IV)	338 µM	0.982	22	MEK	> 20 mM	-
7	Crotonaldehyde	501 µM	0.994	23	Nitrobenzene	> 20 mM	-
8	Nickel (II)	520 μM	0.999	24	Quinoline	> 20 mM	-
9	Lead (II)	528 μM	0.918	25	Toluene	> 20 mM	-
10	1-Aminonaphthalene	1000 μΜ	0.964	26	Benz [a] anthracene	> 100 µM	-
11	Naphthalene	1176 μM	0.902	27	Benzo [a] pyrene	> 100 µM	-
12	m-Cresol	2028 μM	0.936	28	Benzo [b] fluoranthene	> 100 µM	-
13	o-Cresol	2170 μM	0.912	29	Benzo [k]fluoranthene	> 100 µM	-
14	p-Cresol	5060 µM	0.900	30	Dibenz [a,h] anthracene	> 100 µM	-
15	Acrilamide	5880 µM	0.981	31	Dibenzo [a,l] pyrene	> 100 µM	-
16	Phenol	6680 µM	0.982	32	Indeno [1,2,3-cd] Pyrene	> 100 µM	-

✓ Dose-dependent decrease in cell viability observed in 17 toxicants.

✓ Selected appropriate doses for HCS analysis

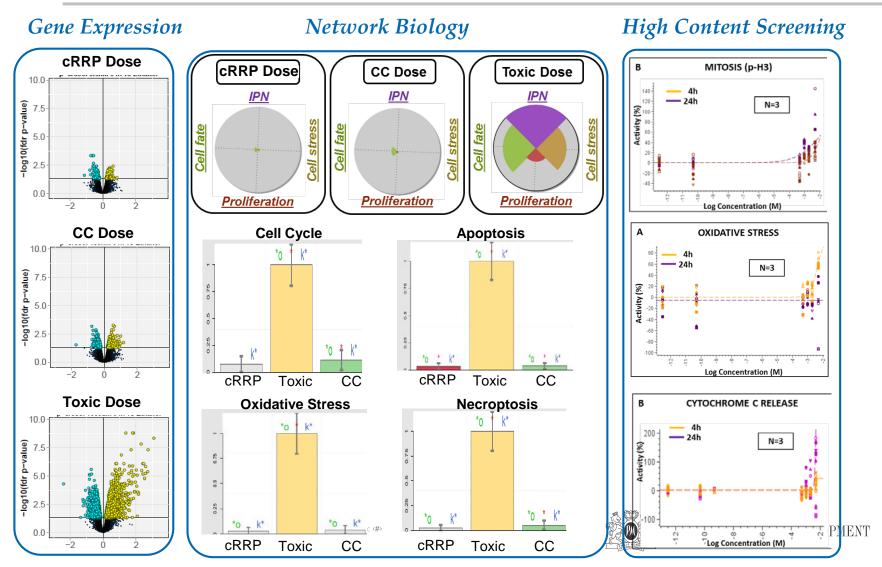
PMI RESEARCH & DEVELOPMENT

Toxicological Assessment of Environmental toxicants

High-Content Screening

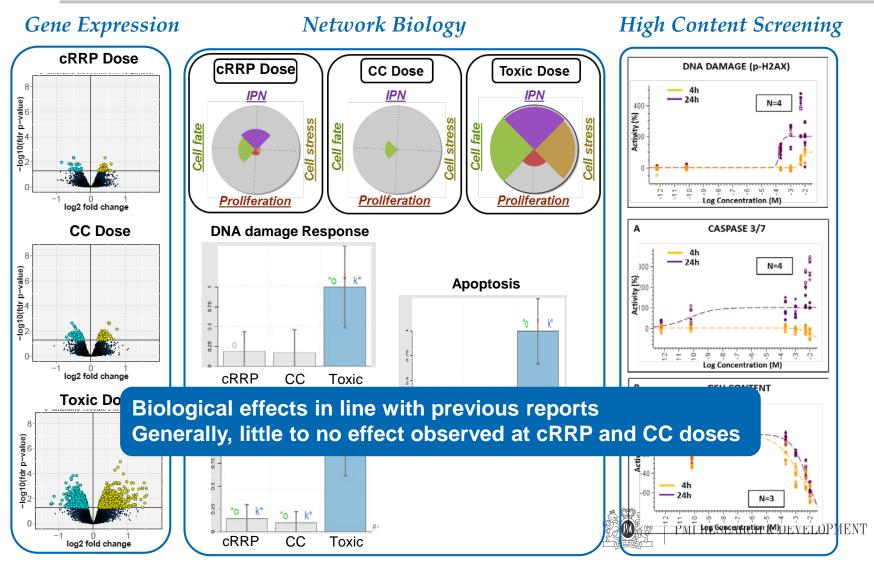
- 6 Different Assays
- 13 Toxicological endpoints
- 6 Doses + vehicle
- 3 replicate wells per dose
- 2 time points (4h & 24h)
- ≥ 3 independent experiments

✓ 10 toxicants selected for Transcriptomics


✓ 3 Doses selected for Transcriptomics:

- cRRP dose
- 3R4F (CC) dose
- HCS-toxic dose

НРНС		Cell Loss	DNA Damage	Stress Kinase	GSH Content	Oxidative Stress	Caspase 3/7	Cytochrome C Release	Cell Membrane Permeability	Mitochondrial Membrane Potential	Mitochondria Mass
5-Methylchrysene	4h	-	-	~	✓	-	-	-	-	-	-
	24h	~	✓	~	~	-	-	-	-	-	-
Arsenic (III)	4h		-	~~	~	-	-	-	-	-	-
Arsenic (III)	24h	1	✓	~~	11	-	~	$\checkmark\checkmark$	√	1	-
ead (II)	4h	-	-	-	✓	-	-	-	-	✓	√√
	24h	1	-	-	1	-	-	✓	-	1	11
m-Cresol	4h	· .	~~	1	~	~	-	-	-	-	-
	24h	1	$\checkmark\checkmark$	-		-	1	-	√	✓	-
Mercury (II)	4h	-	~~	-	~~	✓ 	~	~~	~~	√√	~~
	24h	1	<i>√√</i>	-	44	 ✓ 	<i>√√</i>	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$
Naphthalene	4h	-	-	-	11	✓	-	-	-	-	-
	24h	1	✓ ✓	-	√ √ √ √	-	-	-	-	-	-
o-Anisidine	4h 24h	-	✓ ✓✓	-	~ ~ ~ ~	-	-	-	-	-	-
	24n 4h	•	↓ ↓ ↓ ↓	•	 ✓ ✓ 	-	-	-	-	-	-
o-Cresol	4n 24h	-	· · ·	-			-	-	-		
	2411 4h			- -	··· ✓			-	-	-	-
p-Cresol	24h	1		· ·	11		- ✓	-	-	-	· ·
	4h		11	-	1	~	-	11		-	11
Selenium (IV)	24h	~	11	1	11	-	1	11	11	-	-
	4h		<i>√√</i>	-	✓	<i>√√</i>	-	-	√ √	-	-
1-aminonaphthalene	24h	1	11	1	1	11	~	~	1 1	-	-
	4h		✓	-	~	-	-	-	-	-	-
Chromium (VI)	24h	-	~~	-	~	-	11	-	√ √	-	-
Crotopoldobuda	4h	-	~~	-	-		~	-	$\checkmark\checkmark$	-	-
Crotonaldehyde	24h	1	11	~	-	1	1	11	4	1	-
Acrylamide	4h	•	<i>√√</i>	-	~	-	-	-	-		-
Asiyiannue	24h	<	$\checkmark\checkmark$	✓	~	-	-	-	√	-	-
Phenol	4h	-	~	-	~	-	-	-	-	-	-
	24h	1	11	-	~	-	1	-	√	-	1
Nickel (II)	4h		-	-	~~	-	-	-	-	-	-
inence (iii)	24h	1	-	-	11	-	✓	-	-	-	-
Arsenic (V)	4h	-	-	-	~	-	-	-	-	-	-
	24h	~	-	-	✓	<u>~</u> @?		-	-	-	-



In vitro Toxicological assessment of p-Cresol

Printed documents are uncontrolled - verify current version in the Electronic Document Management System prior to use

In vitro Toxicological assessment of o-Anisidine

Printed documents are uncontrolled - verify current version in the Electronic Document Management System prior to use

Summary

The combination of systems biology and high-throughput imaging tools is a valuable approach to investigate molecular mechanisms of toxicity:

- Mechanistic insight into toxicity pathways activated upon exposure
- Investigate biological perturbations at sub-cytotoxic exposures
- Systematic and robust assessment

Challenges and future directions:

- Continuous improvement of Biological Networks
- Incorporation of additional "omics" endpoints
- Increase the number of HCS-based endpoints
- Expand the number of cellular models
- Ensure transparency and data traceabilityFoster collaboration and data sharing

PMI RESEARCH & DEVELOPMENT

Acknowledgements

Aerosol Generation Lab:

- Didier Goedertier
- Claudius Pak

Bioinformatics:

- Sam Ansari
- Filipe Bonjour
- Stephane Cano
- Sylvain Gubian

Computational Team:

- Florian Martin
- Alain Sewer
- Yang Xiang
- Vincenzo Belcastro
- Stephanie Boue

HCS Lab:

- Diego Marescotti
- Stefano Acali
- Alexandra Laurent
- Stephanie Johne
- Stephan Frentzel

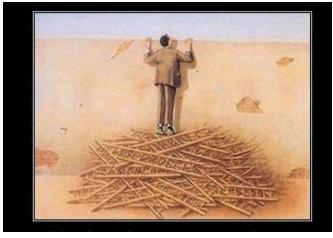
Transcriptomics Lab:

- Emmanuel Guedj
- Remi Dulize
- Karine Baumer
- Dariusz Peric
- Nikolai F. Ivanov

Cyprotex:

- Paul Walker
- Samantha Ellis
- Heather Woodhouse

Bussiness support and Project Management:


- Anouk Ertan
- Pauline Betsch
- David Page
- Bartolomiej Chwirot
- Carole Mathis
- Julia Hoeng
- Manuel c. Peitsch

...and many more...

PMI RESEARCH & DEVELOPMENT

Thank you for your attention and Q&A

www.picturequotes.com

"It doesn't matter how many resources you have, if you don't know how to use them, they will never be enough"

